复合材料在IV型储氢瓶上的应用
目前的储氢瓶可分为四类:
全金属气瓶Ⅰ型(不可车载)
金属内胆纤维环向缠绕气瓶Ⅱ型(不可车载)
金属内胆纤维全缠绕气瓶Ⅲ型(可车载)
塑料内胆纤维全缠绕气瓶Ⅳ型(可车载)
众所周知,氢气是一种易燃易爆的气体,且原子直径很小,在金属材料中很有可能会出现渗透,或者让金属变质,产生氢脆现象,造成燃烧爆炸等安全隐患。
而IV型瓶内胆为高分子材料,除了可以避免氢脆问题之外,还能满足轻量化需求,因此塑料内胆的IV型瓶也成为了储氢瓶研发的下一个焦点。
1 Ⅳ型储氢结构
IV型储氢瓶除了金属瓶阀座外的瓶体全部由非金属材料制成。先来看看结构—
如图1所示,IV型储氢瓶的内部结构包括以下部分:
瓶壁总厚度约为20~30mm
最内阻气层:与氢气直接接触,厚度约为2~3mm,是烯烃类可塑性聚合物,起阻隔氢气作用;
中间耐压层:CFRP碳纤维增强复合材料(碳纤维+环氧树脂),层厚最厚,在保证耐压等级的前提下,尽量减小该层厚度以提高储氢效率;
最外保护层:GFRP玻纤增强复合材料(玻纤+环氧树脂),厚度约为2~3mm。
知道了构成的材料大类,具体到生产应用IV型储氢瓶可以用哪些非金属材料?想必这是所有人都好奇的话题。接下来我们就从应用的角度来一一盘点:
2 氢气阻隔材料
储氢瓶内胆材料是氢气阻隔安全性保障的关键。下表对比了不同高分子材料的气体渗透率——
EVOH共聚物对氧气、水蒸气、二氧化碳三种气体的阻隔性都远远超出其它聚合物材料。
尽管PVDC聚偏氯乙烯阻隔性能也非常优异,但是由于残留的微量氯气会与氢气发生反应,所以不适合用于与氢气直接接触的储气瓶内胆。
EVOH是乙烯和乙烯醇的共聚物,一般乙烯含量在20~45mol%之间,密度为1.13~1.31g/cm3,熔点为160~190℃。
EVOH兼具PVA的阻气性和PE的可加工性,通过添加EVOH,使得储氢瓶内胆即使在低温下也有弹性,确保优良的阻隔性能。
EVOH的气体阻隔性高主要是由于高结晶性和羟基的氢键作用。当乙烯含量降低时,气体阻隔性增加;当乙烯含量大于50mol%时,阻气性会严重受损。
需要注意的是,阻气性随温度升高而降低,如温度从20℃提高到35℃时,氧气的透过率增加3倍多,且在相对湿度大于30%时,水分子与EVOH中的羟基发生作用,将导致气体阻隔性能明显下降。
氢气的渗透会导致两个问题:
塑料内胆失稳向内塌陷。
塑料内胆材料内部发生屈服现象,甚至起泡开裂。
Ⅳ型储氢气瓶还要特别注意金属加注口与聚合物瓶体之间的结构和材料密封,可用接枝聚合物对内胆材料做改性,如添加仅1wt%的低粘度EVA-g-MA,可明显提高EVOH的粘度和扭矩。
IV型储氢气瓶中的EVOH,要想在70MPa下长期安全使用,需要解决以下问题:
树脂中的残留氢导致树脂起泡。
氢脆使得树脂表面形成爪形开裂。
在-40℃的低温下承受反复应力载荷的耐久性。
在高压条件下保持阻气性。
目前,全球仅有三家公司生产EVOH树脂,自从1972年首次开发出EVOH的合成工艺以后,日本可乐丽公司一直是全球产量最大的生产企业,其产品牌号为eval?。
另外两家是日本合成化学工业公司和台湾长春石化。中国每年消费的20000吨EVOH,基本全部依赖进口。
值得一提的是,中石化重庆川维的1.2万吨/年EVOH树脂项目正在规划中,这也是我国EVOH最接近工业化的企业之一。
这意味着EVOH国产化也将有望快速实现,填补需求空白。
3 碳钎维增强材料
氢气被压缩到70Mpa并储存在储罐中,需要确保主体的强度可以承受高压,当储罐中的氢气被消耗时,主体也随着压力降低而收缩,高压环境和反复充放气都会导致材料的疲劳。
目前主流的IV储氢瓶用碳纤维,主要是东丽高强碳纤维长丝TORAYCA?T1000G、T1100G产品。
T1000G和T1100G是以聚丙烯腈为原料,通过纳米级精细控制纤维结构的烧制技术,实现高强度和高弹性模量,并且借助预浸渍工艺制备复合材料的纳米合金。
用作储罐材料的高强碳纤维不仅具有不渗透性能,而且具有优异的耐热性和耐化学性,以及良好的尺寸稳定性、强度和耐磨性。
碳纤维束由平均直径为5~8μm的10000~50000根碳纤维组成。环氧树脂层和碳纤维层的重量比为20~30∶70~80。
骨架碳材料和黏合剂之间,不但有物理附着力,还有化学键合力,芳香族环氧树脂较脂肪族如双酚A型环氧树脂提供更高的强度。
但是,高粘度会使浸渍操作困难,并且难以均匀地浸渍内部,所以要用聚合度低的环氧树脂或溶剂来调节浸渍时的粘度,其缺点是必须重复进行浸渍,以调控体积收缩率的较大波动。
国内T800、T1000高性能碳纤维虽已成功突破实验室相关制备技术。
2019年,我国由中复神鹰牵头,东华大学和江苏新鹰游共同参与的T1000级超高强碳纤维百吨级工程化关键技术通过技术鉴定,成为我国首个实现高强度超高强度碳纤维工程化的厂商。
但有一说一,高强碳纤维实现产业转化还需从原材料、设备、工艺控制等多方面配套技术进行重点发展和完善。
特别是,除了制备高强度碳纤维干丝,还要生产出高强度碳纤维的预浸,即完成织纱的步骤。
东丽是全球最大碳纤维生产商,和帝人、三菱等日本企业已形成覆盖碳纤维全产业链的产业集群。
4 环氧复合材料
用于储氢罐的环氧树脂的黏度在25℃为4000~8000cP,固体颗粒粒径小于10~25μm。
最外层纤维增强树脂层中的玻璃纤维导热性低,所以应确保环氧树脂与固化剂的当量比为1∶1,并且可吸收微波的无机铁氧体颗粒要均匀分散,才能使固化充分,或者在照射微波后通过加热来使纤维增强。
环氧受热固化的过程中,会使聚烯烃内胆软化,为了保护内胆结构,应控制最高固化温度低于内胆软化点10℃以上。
在高压作用下,氢气渗透进材料并逐步扩散到复合材料界面处,而氢气的反复充卸载形成压力差,最终导致内胆材料屈服起泡和界面撕裂。改进的方法是在复合材料中添加粘土。
环氧浸渍碳纤维和粘土复合材料
如上图所示,将碳纤维浸渍环氧树脂基体,再与上下两层各为1nm厚度的粘土膜,经过高温高压条件下层压,使其塑化热成型后,制备成片状半固化的预浸料,最后在100~150℃下进行10~30小时的后固化处理。其中碳纤维作为骨架材料,环氧树脂作为黏合剂。
粘土膜起增强黏合密封的效果,主要成分是粘土,含少量树脂,厚度均匀无针孔。
该复合材料即使在-196℃的低温下暴露100次后,氢气阻隔性能也几乎不降低。
5 写在最后
氢能全产业链的国产化和普及化,需要材料科学的底层支撑,只有相关研究和产业化工作有序串联起来,建立起从宏观工艺参数,到微观结构指标,再到宏观使用性能的一整套数据库体系,才有可能从单一维度视角上升至多维度视角,进而发现并运用更高层级的规律。
当我们对于材料控制精度的认知和操作水平提升了,自然就有能力根据需求调整产品结构和供应量,实现中国能源结构的优化、低碳化和可持续化,最终达成能源自主与碳中和的终极目标。
二、绿氢制取路径及成本分析
与化石能源制氢相比,PEM和AWE制氢技术在生产运行成本与设备投资成本上仍然是相对昂贵的。但考虑到技术快速进步、相应零部件供应增加、巨大氢能市场需求和能源战略部署等因素,这两项电解制氢技术在降低成本方面极具发展潜力。
而对于固体氧化物以及阴离子交换膜电解技术而言,成本降低相对困难,因为只有少数几家公司在其商业化方面努力。此外,其许多组件仍停留于实验室规模的水平,没有原始制造商开展生产和商业化。与AWE或PEM电解制氢相比,固体氧化物以及阴离子交换膜电解技术发展任重道远。
1 成本组成
电解水制氢成本一般包括:①设备成本;②能源成本(电力);③其他运营费用;④原料费用(水)。其 中,能源成本即电力成本占比最大,一般为40%~60%(AWE/PEM),甚至可达80%,该部分主要由能源转化效率(即电解制氢效率)因素驱动,设备成本占比次之。如图5所示,依据国际可再生能源署IRENA(2020)的测算结果,相比于电价65美元/MWh(0.42元/kWh)时,当电价为20美元/MWh(0.13元/kWh)时制氢成本大幅下降,且下降幅度明显高于由于电解槽设备成本降低(由1000美元/kW降至650美元/kW)带来的成本下降幅度,即设备成本的降低不能弥补高电价带来的影响。
对于中国市场而言,当制氢成本降至20元/kg以下时,相比于化石能源制氢,电解制氢才具有一定的竞争优势,此时可再生能源电价需降低至0.3元/kWh以下。据IRENA与Hydrogen Council预测,到2050年可再生能源制氢成本将降至1美元/kg(6.5元/kg),如图4和图5所示。
计算假设:2020年产氢能耗51.2 kWh/kg,2050年产氢能耗43.8 kWh/ kg,折旧率8%,电解槽寿命80 000 h,2020年电解槽设备成本为650~1000美 元/kW,2050年成本为130~307美元/kW,且部署容量为1~5 TW。
图 4 2020—2050年期间绿氢成本变化趋势
计算假设:天然气价格2.5~6.4美元/GJ,平准化电力成本25~73美元/ MWh(2020年)、13~37美元/MWh(2030年)、7~25美元/MWh(2050年)
图 5 不同生产路径氢气成本变化趋势
如图6所示,对于碱性电解槽而言,设备成本主要由电极、膜片等核心部件的成本驱动。在碱性电解槽电解电堆的成本组成中,超过50%的成本与电极和膜片有关,相比之下,PEM电解槽电解电堆中膜电极成本占比为24%。在碱性电解槽中双极板只占电解电堆成本的一小部分,而PEM电解电堆中的成本占比则超过50%,这是由于碱性电解槽的双极板设计更简单,制造更简单,材料更便宜(镀镍钢),重新设计电极和膜片可降低成本。碱性电解制氢系统的辅机部分,碱液循环以及氢气后处理对成本降低较为重要。
图 6 1MW碱性电解槽的成本组成
如图7所示,对于PEM电解槽而言,电解电堆设备成本主要由双极板等核心部件的成本驱动。在PEM电解槽电解电堆中双极板成本占比约53%,主要因为其通常需要使用Au或Pt涂层。技术创新在双极板的性能和耐久性增强以及成本降低方面发挥重要作用。目前正在研究价格更低廉的替代材料,如使用Ti涂层来保持其功能特性不受影响,同时降低成本。稀有金属Ir是膜电极材料的重要组成部分,在实际应用中,虽然Ir在整个PEM电解系统中成本占比不到10%,但由于供应严重不足,可能成为后期PEM电解槽生产的瓶颈。PEM电解制氢系统辅机组成中的水循环和氢气后处理也是降低成本的重要领域。
图 7 1MW PEM电解槽的成本组成
2 成本降低途径
降低绿氢成本不仅需要政府在可再生能源电力上的政策倾斜与激励,还需要科研人员在关键材料研制上的进步与突破,以扩大生产规模,从而降低设备成本。电解制氢设备成本可从两个方面减少。
一是从电解槽设计与单电池材料入手,使用较少的关键材料,尤其是Pt、Ir等成本较高的贵金属材料,或用非贵金属材料(Ni、Fe等)取代。重新设计电解槽以实现更高的效率(更低的电力成本)、更高的耐久性(更长的寿命)以及更高的电流密度,可通过优化膜厚度来降低欧姆电阻(同时还需兼顾气体渗透问题),以提升电解效率,对多孔层传输层(PTL)、双极板流道等关键部件的结构优化,如优化孔隙率、孔径、厚度等PTL结构参数,采用三维网格结构流场等,以提升电解槽性能与寿命。
二是从增加单槽和工厂生产的规模来提升应用经济性,通过执行高通量、自动化的制造工艺,降低每个组件的成本。提升单槽规模可以带来规模经济效益,尽管由于泄漏、大型组件制造限制、大型组件机械不稳定、电池最大面积限制等问题,单槽规模的提升范围有限,但仍旧可产生强大的经济效应。
德国PlanDelyKad的研究发现,100MW碱性电解槽(成本520欧元/kW)比5MW电解槽(成本1070欧元/kW)的成本降低了约50%。但是,当超过10~20MW时,增加容量带来的成本降低幅度将大大减弱。
3 未来技术发展方向
中国已成为世界第一产氢大国,工业氢气产量领跑全球。根据相关测算,预计中国2060年部署电解制氢装机容量约500GW。中国在未来的氢能源市场中不仅是产氢大国,更是用氢大国。预计到2060年,氢能在交通运输、储能、工业、建筑等领域广泛使用,中国的氢需求量由目前3000多万t提升至约1.3亿t,提升300%以上。
未来氢能有望打通可再生能源电力在交通、工业和建筑领域终端应用的渗透路径,逐步降低化石能源在这些终端领域的消费比重。随着材料和部件制备、系统集成等技术的突破,氢能绿色制取技术将朝着延长运行寿命、提升单体功率、降低安全风险和成本等方向发展,关键部件材料实现国产化,制氢单体功率将提升至10MW级,系统单位能耗不高于4kWh/m3。实现氢能的规模化应用,还需在以下方面进行深入研究。
1)研究新能源输入对电解槽及制氢系统影响,解决可再生能源高比例并网问题。
在新能源随机性、波动性输入下,制氢系统变工况及频繁启停运行特性引起的氢氧浓度、压力变化,对设备安全、稳定运行提出新要求。目前国际上对以上方面研究较少,新能源输入对电解槽及制氢系统影响的微观分析和实验研究数据尚且不足,电解设备与波动电源之间的匹配性与兼容性有待提高。因此,近期需要对新能源输入对电解槽及制氢系统(以AWE和PEM为主)的影响进行深入研究,以推动可再生能源电解制氢的大型示范应用。
2)提高电解槽和系统可靠性与耐久性。
目前,中国电解槽和系统在全工况下的可靠性与耐久性等与国际先进水平仍存在差距。电解槽系统可靠性与寿命不仅与电解电堆相关,还依赖于配套的辅机设备。因此,需进一步加强电解槽产品的可靠性与耐久性研究,促进电解制氢技术参与电网调峰调频,增加与电网互动。
3)提升电解槽关键材料与核心部件自主化研发水平。
由绿氢成本分析可知,电极、膜片、双极板等成本占比较高,但目前中国在关键材料、核心部件上的研发水平与国外差距较大,且严重依赖国外进口,不具备批量生产的能力,这严重制约了中国电解制氢产业的规模化发展。因此,亟待加强关键材料核心部件的自主化研发水平,加快形成具有完全自主知识产权的批量制备方法,全面实现关键材料与核心部件的国产化。
据米合咨询报告数据:
1. 绿氢的制备来源于可再生能源生产的电力,以清洁、用途广泛为显著特点,助力难以脱碳行业的实现去碳化,预计到2050年将占全球一次能源供应的15%。
2. 根据我们的模型预测,2020年绿氢成本每公斤4.2美元,2030年为1.9美元,2050年为1美元。分区域的绿氢价格介于0.8美元到1.3美元之间,中东/北非价格最低,欧洲价格最高。
3. 市场潜力大、成本低的地区将引领第一波绿氢发展热潮,领跑者很可能是欧洲、中东/北非及澳大利亚。
4. 美国和中国将通过绿氢蓝氢同步发展迎头赶上,实现氢能自给自足。中东/北非、澳大利亚及西拉美将成为氢能出口枢纽。欧洲依然主要发展绿氢,叠加进口来满足氢能需求。
5. 2020年生产绿氢的电力成本平均为44美元/兆瓦时,占到总成本的56%,平准化度电成本在近几年将大幅下降,之后趋于平稳。2050年电力成本预计为17美元/兆瓦时,占到生产绿氢总成本的70%,因此电力成本差异将直接导致绿氢成本存在地区性差异。
6. 到2050年,电力成本、电解槽投资成本的加和将占到削减了的总成本的一半,另外随转换效率和负载因数持续优化,贡献可达削减了的总成本的17%。
7. 在欧洲,到2030年绿氢的盈亏平衡点有望与灰氢、蓝氢持平,到2040年有望与LNG、天然气持平。
8. 在氢能消费端,2020年绿氢将开始在供热和重卡行业得以应用,到2030年很可能作为极具价格竞争力的能源在主流工业领域和交通领域推广应用。